
Stepped Pressure Equilibrium Code

ma02aa

Constructs Beltrami field in given volume consistent with flux, helicity, rotational-transform and/or parallel-current constraints.

[called by: dforce.] [calls: packab, df00ab, mp00ac.]
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1.1 seqeuntial quadratic programming

1. Only relevant if LBsequad=T. See LBeltrami for details.

2. Documentation on the implementation of NAG: E04UFF is under construction.

1.2 Newton method

1. Only relevant if LBnewton=T. See LBeltrami for details.

1.3 “linear” method

1. Only relevant if LBlinear=T. See LBeltrami for details.

2. The quantity µ is not not treated as a “magnetic” degree-of-freedom equivalent to in the degrees-of-freedom in the magnetic

vector potential (as it strictly should be, because it is a Lagrange multiplier introduced to enforce the helicity constraint).

3. In this case, the Beltrami equation, ∇× B = µB, is linear in the magnetic degrees-of-freedom.

4. The algorithm proceeds as follows:

1.3.1 plasma volumes

(a) In addition to the enclosed toroidal flux, ∆ψt, which is held constant in the plasma volumes, the Beltrami field in a given

volume is assumed to be parameterized by µ and ∆ψp. (Note that ∆ψp is not defined in a torus.)

(b) These are “packed” into an array, e.g. µ ≡ (µ,∆ψp)
T , so that standard library routines , e.g. NAG: C05PCF, can be used

to (iteratively) find the appropriately-constrained Beltrami solution, i.e. f(µ) = 0.

(c) The function f(µ), which is computed by mp00ac, is defined by the input parameter Lconstraint:

i. If Lconstraint = -1, 0, then µ is not varied and Nxdof=0.

ii. If Lconstraint = 1, then µ is varied to satisfy the transform constraints; and Nxdof=1 in the simple torus and Nxdof=2

in the annular regions. (Note that in the “simple-torus” region, the enclosed poloidal flux ∆ψp is not well-defined, and

only µ = µ
1

is varied in order to satisfy the transform constraint on the “outer” interface of that volume.)

iii. If Lconstraint = 2, then µ = µ
1

is varied in order to satisfy the helicity constraint, and ∆ψp = µ
2

is not varied, and

Nxdof=1. (under re-construction)

1.3.2 vacuum volume

(a) In the vacuum, µ = 0, and the enclosed fluxes, ∆ψt and ∆ψp, are considered to parameterize the family of solutions. (These

quantities may not be well-defined if B · n 6= 0 on the computational boundary.)

(b) These are “packed” into an array, µ ≡ (∆ψt,∆ψp)
T , so that, as above, standard routines can be used to iteratively find the

appropriately constrained solution, i.e. f(µ) = 0.

(c) The function f(µ), which is computed by mp00ac, is defined by the input parameter Lconstraint:

i. If Lconstraint = -1, then µ is not varied and Nxdof=0.

ii. If Lconstraint = 0,2, then µ is varied to satisfy the enclosed current constraints, and Nxdof=2.

iii. If Lconstraint = 1, then µ is varied to satisfy the constraint on the transform on the inner boundary ≡ plasma

boundary and the “linking” current, and Nxdof=2.
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5. The Beltrami fields, and the rotational-transform and helicity etc. as required to determine the function f(µ) are calculated in

mp00ac.

6. This routine, mp00ac, is called iteratively if Nxdof > 1 via NAG: C05PCF to determine the appropriately constrained Beltrami

field, Bµ, so that f(µ) = 0.

7. The input variables mupftol and mupfits control the required accuracy and maximum number of iterations.

8. If Nxdof = 1, then mp00ac is called only once to provide the Beltrami fields with the given value of µ.

1.4 debugging: finite-difference confirmation of the derivatives of the rotational-transform

1. Note that the rotational-transform (if required) is calculated by tr00ab, which is called by mp00ac.

2. If Lconstraint=1, then mp00ac will ask tr00ab to compute the derivatives of the transform with respect to variations in the

helicity-multiplier, µ, and the enclosed poloidal-flux, ∆ψp, so that NAG: C05PCF may more efficiently find the solution.

3. The required derivatives are

∂ ι-

∂µ
(1)

∂ ι-

∂∆ψp

(2)

to improve the efficiency of the iterative search. A finite difference estimate of these derivatives is available; need DEBUG, Lcheck=2

and Lconstraint=1.

ma02aa.h last modified on 2018-07-11 09:50:21; SPEC subroutines;
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